2011년 11월 12일 토요일

돔하아스 제작

지오데오식 돔 건축을 알아보게된 동기는 비닐하우스와는 조금 차원이 다른
건조실 혹은 창고를 만들생각으로 생각했는데, 개인 Green house 및 해상
건축물등 간편하게 지어 거주할 수 있는 자료가 많아 다른 분들도 도움이
될 수 있으면 참조하시라 게제합니다.
저희는 연천콩을 사용하여 메주를 만들어 겉말림할 참고가 필요해서 검토
하고 있습니다. 얼른 좋은 메주를 만들어 발효한 후 제공해 드려야할 텐데.

이하 지오데오식 건축(Geodeosic architecture)에 대한 설명입니다.
--------------------------------------------------------------
http://www.desertdomes.com/dome.html

지오데오식(Geodeo) 돔 건축

지오데식 돔과 일반돔 ?

지오데식 돔 Geodesic Dome 일반 돔 Non-geodesic Dome

지오데식 돔 Geodesic Dome

지오데식 돔은 구(球, sphere)의 표면을 지나는 각 원주(great circles=geodesics, 일명 측지선)들을 격자모양 또는 셀(shell) 구조로 하여 만들어지는 반구(partial-spherical) 모양의 구조체를 말한다. 쉽게 말해 축구공의 반쪽과 같이 내부는 비어있고 특별한 내부 지지구조 없이 그 표면을 덮은 구조물이라 이해하면 된다.

지오데식 구조체는 강성(rigid)을 가지는 삼각형이 서로 교차하는 형태로 표면이 구성되는데 이때 표면에 작용되는 모든 힘은 모든 구조체에 골고루 분포되어 전달되게 된다. 이 경우 모양이 구의 형태를 띠게 되면 일명, 지오데식 구(Geodeisc Sphere)가 된다. 이 상태에서의 지오데식 구조체는 가장 적은 부재로 가장 강한 구조적 특성을 자연스럽게 지니게 된다.

지오데식 돔은 전형적으로 구의 표면을 깍아서 만든 정20면체(Icosahedron)에서 유래되어 만들어진다. 정20면체 표면을 필요한 만큼의 작은 삼각형으로 각각 쪼개고, 그리고 난 후에 쪼개진 각 삼각형의 모든 꼭지점들을 구의 표면으로 밀어내면 원래 구에 아주 가까운 구조체가 형성되는 것이다. 이러한 작업이 정확하게 이루어지게 되면 원래 모두 정삼각형으로서 각 변의 길이가 같았던 각각의 작은 삼각형들(sub-triangles)은 미세하게 그 길이가 달라지게 되며, 따라서 쪼개지는 삼각형의 개수에 따라서 각 변의 연결부재들의 종류도 여러 개로 늘어나게 되는 것이다. 이 여러 개의 길이가 다른 부재들을 수를 줄이기(minimize) 위해서 다양한 단순화 기법이 사용되고 있다.




역 사 History
지오데식이라 불릴 수 있는 최초의 돔은 세계1차대전 후에 독일의 Carl Zeiss 광학회사의 엔지니어였던 발더 바우어스펠트 Walther Bauersfeld에 의해 고안되어 플래너테리움(별자리 관찰 천문관)을 짓는데 적용되었다. 이 돔은 특허출원 되었고, 1926년 7월, 독일 제나시에 있는 칼자이스 공장 지붕에 건축되어 일반인들에게 공개되었다.


그로부터 30여년 후, 리차드 벅민스터 풀러 R. Buckminster Fuller가 1948-1949년 블랙마운틴대학에서 예술가인 케니스 스넬슨 Kenneth Snelson과 함께 실험 장치를 만들다가 그러한 돔을 “지오데식 geodesic"이라 이름 지었다. 그 당시 스넬슨과 풀러는 텐시그리티(tensegrity)라는 공학적 구조체를 함께 연구했다. 텐시그리티란 ‘연속 장력과 불연속 압축력을 적절히 결합하여 구조적 강성을 유지하도록 하는 공학 원리”로서, 예를 들면 돔의 표면을 서로 작은 삼각형으로 나뉘어 상호 연결되도록 구성되어 있는 정20면체의 경량격자구조(lightweight lattice of interlocking icosahedron)로 배열함으로서 그 돔이 어떤 표면을 적절한 강성과 형체를 유지하면서 전체를 덮을 수 있게 되는데 그 이유를 설명해주는 원리이다. 풀러는 원래 발명가는 아니었지만 돔이 갖고 있는 고유의 수학적 원리를 밝혀내고 그리하려 1954년에 이에 대한 발명특허를 갖게 되었다.

지오데식 돔은 풀러에게는 큰 관심사였는데 그 이유는 그 구조적 특성으로 인해 자중에 대한 강성은 물론이고 표면이 작은 삼각형으로 구성되다보니 그 자체로 매우 안정된(stable) 구조를 이루면서, 최소의 면적으로 전체 표면을 높은 강도로 덮을 수 있었기 때문이었다. 풀러는 세계대전이라는 큰 전쟁이 끝난후에 인류가 부딪힌 과제 중 하나인 주택부족 문제를 해결해 줄 수 있는 대안이 될 수 있다는 사실에 무척 고무되었다고 한다. 그는 실제로 지오데식 돔으로 시카고 도시 전체를 덮을 수 있다고 주장했으며, 그 주장은 눈과 비를 피할 길 없는 집 없는 도시민들의 애환을 해결하기 위한 인류애적인 관점에서 나온 것으로 그의 사상을 엿볼 수 있는 부분이라 할 수 있다. 풀러 그 자신도 미국 일리노이즈 카본데일시에서 실제로 지오데식 돔집을 짓고 그곳에서 살았다고 한다.

풀러의 발명 이후로 각 분야에서 지오데식 돔이 채택되어 널리 활용되었으며, 특히 기상관측소, 저장탱크, 공연장 뿐만 아니라 주택 및 이동식 텐트에 이르기 까지 많은 분야에 적용되었다. 상징적인 건축물로는 1967년 캐나다 세계엑스포 전시장에 설치된 미국전시관으로 지금도 많은 관광객이 찾고 있다. 우리나라에도 전시관, 관측소용으로 많이 도입되어 있으나, 주거용 주택으로는 그리 널리 알려지지 않은 상태이다. 구조적 특성과 외관의 독특함으로 인해서 테마카페나 식당, 개성적인 주택을 원하는 사람에게 널리 보급될 것이라 생각된다. 국내에서 목조주택 형식으로 시공하는 회사는 서울하우징이 유일하며, 일부 회사의 돔형 주택을 플라스틱으로 제조된 것 들이이거나 지오데식이 아닌 일반 돔구조이다.



특 징 Features

•돔의 구조적 특성상 건축 공학적으로 매우 안정되고 튼튼한 구조이다
•미관상으로 둥근 원을 기본으로 하기 때문에 안정되게 보여진다.
•미국에서는 약 60여년 전 부터 표준화된 공법으로 시공, 활용되고 있다.
•구조적 특성상 건물 내부에 지붕을 받치기 위한 기둥이 없어 내부공간 구성이 자유롭고 공간확장, 리모델링 등이 매우 간편해 진다.
•둥근 외형은 강한 태풍에도 바람의 저항을 적게 발생시켜 자연스럽게 견딜 수 있는 구조이다.
•지오데식은 가장 적은 표면으로 가장 넓은 면적을 덮기 때문에 에너지 발산 면적이 매우 적어지므로 일반 직각구조의 건물에 비해 30-50% 에너지효율이 높다.
•전체 구조물이 일체형으로 되어 있으므로 지진 등에도 매우 강하다.
•일반 직각구조의 건물과는 달리 구형돔의 실내 공기순환은 자연스러운 곡선에 의해 매우 자연스럽게 이루어져 실내 공간에서의 에너지 배분이 매우 효율적이므로 당연히 에너지효율이 높아진다.
•중간 기둥없는 공간을 원하는 곳(전시관,테마카페,식당,체육관,집회장소,)에 매우 적당하다.
용 도 Usage

•대형 소형 주거용 주택, 전시관, 테마카페 및 식당, 체육시설, 집회시설, 행사 이벤트, 원예시설 등등
•실내 기둥이 없어야 하는 곳에는 쉽게 적용 가능






글로벌 돔하우스 카페 : http://cafe.daum.net/Globals

칸건축 : http://www.kaan.kr/dome/company.htm에서는 돔텐트 임대가능
돔하우스 : 직접 조립된 돔하우스 판매 ,http://www.dome-house.co/
돔하우스건축 : http://www.dome-house.co.kr/sub05/list1.php?code=2
천막 : http://asiatent.co.kr/html/product/pro_form.asp
서울하우징 : http://www.seoulhousing.co.kr/technote7/board.php?board=tnshopdomecase

http://blog.naver.com/olle0318?Redirect=Log&logNo=120126915575
지성영농조합법인 : 규브하우스 및 돔하우스 설명 http://www.koreacube.com/customer/index.htm
풍선 천막 : http://korean.alibaba.com/products/inflatable-tent-price_3.html

미국 설계도면 판매사이트(inch단위 사용)http://david.martiniii.tripod.com/domecompanyplanspage.html

미국돔하우스 http://www.i-domehouse.com/characters.html

=================================================================
Geodesic Domes History
Since the beginning, mankind's ambition has been to feed, protect and improve itself. The oldest civilizations evolved living in round yurts, igloos and teepees because of a need for strong shelter, the scarcity of building materials, and light weight that took the least effort to transport during migration. Many of the world's oldest and architecturally beautiful buildings in Europe and Asia are arched domes, or buildings with clear span arch entries and halls built strong enough to survive the centuries. Dr. Walter Bauersfeld, using spherical geometry, was first to combine the strongest geometric shape, the triangle, with the sturdy arch in Jena, East Germany in 1922.

Some popular geodesic domes known today are:
◦Future World Exhibition at Epcot Center in Walt Disney World
◦Tacoma Dome in Washington State. At 530' in diameter, it is the largest public geodesic dome covering a football field and grandstands
◦Minneapolis Convention Center expanding to 500,000 sq. ft. under four low profile domes
◦America's exhibit at the 1967 World Fair in Montreal, for which the United States commissioned Buckminster Fuller
◦Milwaukee's Mitchell Park Conservatory with three geodesic domes sitting on elliptical bases that provide tropical flower gardens year round
◦Biosphere desert project in Arizona
◦Des Moines Arboretum, a self contained ecosphere
◦Los Angeles city housing project with over two dozen domes
◦Geodesic jungle gyms in many American city parks
◦Thousands of family residences and cabins throughout North America
Geodesic Dome Facts
A sphere is defined as the geometric shape that encloses the most volume with the least surface area. A dome is the safest, strongest and most energy efficient building. It takes less building materials to enclose usable living or working area in a dome than any other shaped structure. Forty feet of wall will enclose a 10 x 10 area measuring 100 sq. ft., while forty feet of wall built in a circle will enclose 127 sq. ft., a 27% increase.

Geodesic domes offer the safest shelter in the most violent weather extremes around the world. In tornadoes and hurricanes, high winds and negative air pressure combine and get under the eves and soffits of conventional housing, then rip the roof off, leaving the occupants exposed. A geodesic dome's aerodynamic shape offers the best above ground protection against winds from any direction, allowing gale force winds to slip past. During an earthquake, a conventional house rocks off its foundation and topples as the earth makes lateral shifts. A dome has an even distribution of weight and a low center of gravity so it moves with the earth. Engineering for incredible snow loads is intrinsic in its design. Insulating efficiently against extreme heat or cold is a direct factor of the exposed surface area, or outside wall area of any building. The vaulted ceiling in its free span interior allows excellent air circulation and heat recovery. You may design geodesic dome walls where you want them, if you want them, as you are unrestricted by bearing walls necessary to hold up a standard roof. There are no limits to interior design creativity.

The key structural unit in a geodesic dome is a four-surfaced pyramid figure called a tetrahedron. The geometric shape on which all geodesic domes are based is a 20-sided polyhedron called an icosahedron. Like the tetrahedron, each side is an equilateral triangle, and at each point five triangles meet to form pentagons. Unless it is a complete sphere, all geodesic domes have six pentagons, one at the top and five around the perimeter. The largest domes, hundreds of feet in diameter, have thousands of hexagons but still only six pentagons.

There are three ways to identify a geodesic dome; diameter, frequency and profile. The diameter is the distance from one side of the sphere to the other through the center point. The frequency is the number of framing members, called chords, from the center of any pentagon to the center of any other pentagon. Typically, a dome building is flat on the bottom so it will sit flat on the ground, and the profile is a percentage of sphere, expressed as a fraction. An example: The Imagination Room geodesic dome displayed at the Science Museum of Minnesota is a three frequency, 36' diameter, 4/9ths sphere.
Top | Home | History | Photos | Uses | Plans | Specs | Prices | Links | Contact Us Dome Incorporated - Energy Efficient Geodesic Dome Homes - Dome Design
Blair F. Wolfram, "The Dome Guy", 11480 - 141st Av N, Minneapolis, MN 55327
(888) DOME INC (366.3462) or (612) 333-DOME (333.3663)
DomeIncorporated.com - thedomeguy@domeincorporated.com

==================================================================
http://www.ehow.com/how_5632768_build-geodesic-dome-house.html


Related Searches:
A geodesic dome house can be built more quickly and less expensively than a conventional house, and it makes an appealing and unique living structure. An extremely simple house can be built by making several smaller domes and linking them together, which reduces heating and cooling costs and saves interior space. The average "backyard builder" can make a geodesic dome house in about a week.

Difficulty:ModerateInstructions
Things You'll Need
Several dozen sticks of 3/4-inch or 1-inch electrical conduit pipe
4-pound hammer and anvil or arbor press
Over a hundred (depends on size and degree of dome) bolts and nuts (1/4-inch or 5/16-inch, at least 4 inches long)
Drill
Concrete
Concrete mixer
Wheelbarrow
Shovels
Tight wire mesh
Suggest Edits

1
Decide on a size for the dome house, and select a "degree." The degree is the amount of complexity in each geodesic dome---the more "chords" (struts) that are in a dome, the higher the degree. The more complex the dome, the harder it will be to build, but it will have a rounder shape. Use the Dome Calculator at desertdomes.com to determine the length of the chords required to construct the dome.

2
Cut the electrical conduit pipe to the lengths given by the calculator. For a second-degree dome, there are two sizes for an A and B chord structure. Third-, fourth-, and fifth-degree domes have exponentially increasing chord numbers. Cut the pipe, label it, and set it aside.

3
Press the ends of each chord to a depth of 2 inches, then bend it to an angle of 10 degrees toward the opposing end. The result is a pipe with two pressed ends in a slightly "C" shape.

4
Drill one hole in the center of each flattened end. The hole should be able to accommodate the bolt size chosen.

5
Assemble the dome by following the diagram for the chosen degree on desertdomes.com. The dome should be built from the ground up, laying out the A struts in a dodecahedral shape (second degree) and then attaching the next layer of struts with bolts through the drilled holes on the bent side. Secure the struts by placing a nut onto each bolt, but do not tighten the nuts completely.

6
As the dome rises, multiple struts will be attached to each bolt. The bolts can be tightened once the last bolt is placed into the top vertex. Tighten them in an alternating pattern until they are all very secure.

7
Cover the dome with a fine wire mesh, attaching the mesh sheet to the metal frame of the dome with zip ties. Use a liberal number of ties, and lay down a second layer of mesh if the budget allows. Leave openings for the door and windows.

8
Mix the concrete in a a mixer and spread it onto the dome, starting at the bottom. Lay a foundation layer onto the interior ground, and slightly up the sides of the inside dome. Work your way around the base, placing a concrete foundation on both sides until it is about a foot thick. Spread the concrete up the sides, layering it on the cured section below it. Try to spread it around the side, adding a strata layer and allowing it to cure, rather than trying to cover the entire dome at once. This will prevent cracking and distribute the weight more evenly. Smooth the edges around the windows and doors, add stylized openings, or shape the concrete to a more square form.

9
Add doors, windows, and interior sheet rock as desired. Specialized windows add to the appearance, as do shaped doors. Use your imagination to customize your house uniquely.

Tips & Warnings
Using a lower grade concrete, which has a higher percentage of "filler" rock, may not leave a smooth shape.

Use concrete with a long cure time.

Use extreme caution when climbing a dome frame.

Suggest item

References
Desert Domes
how to build a dome
Easily build a geodesic dome
Resources
Professional Dome Plans


Read more: How to Build a Geodesic Dome House | eHow.com http://www.ehow.com/how_5632768_build-geodesic-dome-house.html#ixzz1da0mHm13


===========================================

How to Calculate Geodesic Domes
X Ryan CrooksI am a licensed architect with 15 years experience in residential, institutional, healthcare and commercial design. I am also an instructor, teaching architecture to high school and college students. I have written hundreds of articles for Demand Media and other websites.

By Ryan Crooks, eHow Contributor

Print this articleRelated Searches:
Geodesic domes were popularized by Buckminster Fuller in the 1950s. Since their introduction, geodesic domes have been constructed for many uses, including homes, containers, and structures for outer space. The name of the dome is from the chords of the structure that create great arcs, also known as geodesics. The dome's form is useful because it is approximately spherical and has a large volume relative to its surface area. Furthermore, the chords of the structure distribute loads around the interior volume, like a shell. There are many types of geodesic spheres, and each has unique geometric properties. The formulas for calculating most of the spheres are too entailed to include here, so use the references and resources provided to determine the construction specifications. Nevertheless, two very popular geodesic dome types are given below.

Difficulty:Moderately ChallengingInstructions
Things You'll Need
Calculator
Pencil
Paper
Balsa or basswood sticks
Straight pins
Suggest Edits
Planning and Design
1
Determine the purpose for the geodesic dome and what size the dome should be. Because the dome is spherical, a diameter or radius is an appropriate manner to describe the size.

After the size has been determined, find the desired type of geodesic dome from the references and resources. For simplicity, two types of dome are described here--icosahedral and truncated icosahedral. Both types are composed of regular polygons.

2
An icosahedron has 20 faces and is composed of equilateral triangles. Though it loosely approximates a sphere, the icosahedron is easy to construct and can incorporate many variations. An icosahedral geodesic dome omits 1, 5, or 15 faces from an icosahedron, depending on the desired form.

To calculate the chord length, determine the maximum exterior radius or the minimum interior radius of the polyhedron. The maximum exterior radius will give the size of the structure's footprint, and the minimum interior radius denotes the dome's usable volume.

For the maximum exterior radius:

Chord Length = Maximum Exterior Radius / 0.95106

For the minimum interior radius:

Chord Length = Minimum Interior Radius / 0.75576

There is only one chord length for an icosahedral geodesic dome, so the calculations are complete.

A complete icosahedron has 20 faces, 30 chords, and 12 vertices or nodes.

3
A very popular form of geodesic dome is the truncated icosahedral geodesic dome. Apparent from its name, this geodesic dome type is created from a modified icosahedron. A truncated icosahedron has 32 faces, 90 chords, and 60 vertices or nodes. Unlike the icosahedron, the truncated icosahedron is made up of two shapes--regular hexagons and regular pentagons.

As with the icosahedral geodesic dome, the truncated icosahedral geodesic dome's chord length can be found relative to the radius.

Chord Length = Maximum Exterior Radius / 2.47801

For the minimum interior radius:

Chord Length = Minimum Interior Radius / 2.42707

Though there is only one chord length for a truncated icosahedron, it is suggested the regular hexagons and pentagons are triangulated. The easiest way to do this is to construct the hexagons and pentagons with equilateral triangles. The hexagon will not be affected by the introduction of equilateral triangles, however the pentagons constructed with equilateral triangles will expand three-dimensionally, breaking the plane of the circumferential sphere. If this is not desired, a second chord length can be introduced to triangulate the pentagon with isosceles triangles. Triangles that will not break the plane of the pentagon will have the chord length:

Interior Pentagon Chord = Exterior Pentagon Chord / 1.17557

Otherwise, the chord lengths can approximate the shape of the sphere. The chord lengths within the hexagons and pentagons would be:

Interior Chord Length = Exterior Radius x [2 x sin ( Arc Angle / 2 )]

This formula will work for the chords with any geodesic form approximating a sphere.

4
After calculating the chords, test the calculations by making a balsa or basswood scale model of the geodesic dome. Use straight pins for the vertices or chord intersections. Remember the chords have been calculated as lines without dimensions. Find the depth of the connections, from the vertex, and multiply this dimension times 2. Subtract this from the calculated chord length, and this is the scaled length to be cut for the model.



Read more: How to Calculate Geodesic Domes | eHow.com http://www.ehow.com/how_5943748_calculate-geodesic-domes.html#ixzz1dalxb74m

댓글 없음:

댓글 쓰기